3.60 \(\int \frac{1}{x^2 (a+b \text{sech}^{-1}(c x))^2} \, dx\)

Optimal. Leaf size=86 \[ -\frac{c \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )}{b^2}+\frac{c \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )}{b^2}+\frac{\sqrt{\frac{1-c x}{c x+1}} (c x+1)}{b x \left (a+b \text{sech}^{-1}(c x)\right )} \]

[Out]

(Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x))/(b*x*(a + b*ArcSech[c*x])) - (c*Cosh[a/b]*CoshIntegral[a/b + ArcSech[c*x
]])/b^2 + (c*Sinh[a/b]*SinhIntegral[a/b + ArcSech[c*x]])/b^2

________________________________________________________________________________________

Rubi [A]  time = 0.144917, antiderivative size = 86, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.357, Rules used = {6285, 3297, 3303, 3298, 3301} \[ -\frac{c \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )}{b^2}+\frac{c \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )}{b^2}+\frac{\sqrt{\frac{1-c x}{c x+1}} (c x+1)}{b x \left (a+b \text{sech}^{-1}(c x)\right )} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^2*(a + b*ArcSech[c*x])^2),x]

[Out]

(Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x))/(b*x*(a + b*ArcSech[c*x])) - (c*Cosh[a/b]*CoshIntegral[a/b + ArcSech[c*x
]])/b^2 + (c*Sinh[a/b]*SinhIntegral[a/b + ArcSech[c*x]])/b^2

Rule 6285

Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> -Dist[(c^(m + 1))^(-1), Subst[Int[(a + b
*x)^n*Sech[x]^(m + 1)*Tanh[x], x], x, ArcSech[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] &
& (GtQ[n, 0] || LtQ[m, -1])

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3298

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(I*SinhIntegral[(c*f*fz)
/d + f*fz*x])/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]

Rule 3301

Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(c*f*fz)/d
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \left (a+b \text{sech}^{-1}(c x)\right )^2} \, dx &=-\left (c \operatorname{Subst}\left (\int \frac{\sinh (x)}{(a+b x)^2} \, dx,x,\text{sech}^{-1}(c x)\right )\right )\\ &=\frac{\sqrt{\frac{1-c x}{1+c x}} (1+c x)}{b x \left (a+b \text{sech}^{-1}(c x)\right )}-\frac{c \operatorname{Subst}\left (\int \frac{\cosh (x)}{a+b x} \, dx,x,\text{sech}^{-1}(c x)\right )}{b}\\ &=\frac{\sqrt{\frac{1-c x}{1+c x}} (1+c x)}{b x \left (a+b \text{sech}^{-1}(c x)\right )}-\frac{\left (c \cosh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\cosh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\text{sech}^{-1}(c x)\right )}{b}+\frac{\left (c \sinh \left (\frac{a}{b}\right )\right ) \operatorname{Subst}\left (\int \frac{\sinh \left (\frac{a}{b}+x\right )}{a+b x} \, dx,x,\text{sech}^{-1}(c x)\right )}{b}\\ &=\frac{\sqrt{\frac{1-c x}{1+c x}} (1+c x)}{b x \left (a+b \text{sech}^{-1}(c x)\right )}-\frac{c \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )}{b^2}+\frac{c \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )}{b^2}\\ \end{align*}

Mathematica [A]  time = 0.333992, size = 82, normalized size = 0.95 \[ \frac{-c \cosh \left (\frac{a}{b}\right ) \text{Chi}\left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )+c \sinh \left (\frac{a}{b}\right ) \text{Shi}\left (\frac{a}{b}+\text{sech}^{-1}(c x)\right )+\frac{b \sqrt{\frac{1-c x}{c x+1}} (c x+1)}{x \left (a+b \text{sech}^{-1}(c x)\right )}}{b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^2*(a + b*ArcSech[c*x])^2),x]

[Out]

((b*Sqrt[(1 - c*x)/(1 + c*x)]*(1 + c*x))/(x*(a + b*ArcSech[c*x])) - c*Cosh[a/b]*CoshIntegral[a/b + ArcSech[c*x
]] + c*Sinh[a/b]*SinhIntegral[a/b + ArcSech[c*x]])/b^2

________________________________________________________________________________________

Maple [A]  time = 0.258, size = 164, normalized size = 1.9 \begin{align*} c \left ({\frac{1}{2\,xbc \left ( a+b{\rm arcsech} \left (cx\right ) \right ) } \left ( \sqrt{-{\frac{cx-1}{cx}}}\sqrt{{\frac{cx+1}{cx}}}cx-1 \right ) }+{\frac{1}{2\,{b}^{2}}{{\rm e}^{{\frac{a}{b}}}}{\it Ei} \left ( 1,{\frac{a}{b}}+{\rm arcsech} \left (cx\right ) \right ) }+{\frac{1}{2\,xbc \left ( a+b{\rm arcsech} \left (cx\right ) \right ) } \left ( \sqrt{-{\frac{cx-1}{cx}}}\sqrt{{\frac{cx+1}{cx}}}cx+1 \right ) }+{\frac{1}{2\,{b}^{2}}{{\rm e}^{-{\frac{a}{b}}}}{\it Ei} \left ( 1,-{\rm arcsech} \left (cx\right )-{\frac{a}{b}} \right ) } \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/(a+b*arcsech(c*x))^2,x)

[Out]

c*(1/2*((-(c*x-1)/c/x)^(1/2)*((c*x+1)/c/x)^(1/2)*c*x-1)/c/x/b/(a+b*arcsech(c*x))+1/2/b^2*exp(a/b)*Ei(1,a/b+arc
sech(c*x))+1/2/b*((-(c*x-1)/c/x)^(1/2)*((c*x+1)/c/x)^(1/2)*c*x+1)/c/x/(a+b*arcsech(c*x))+1/2/b^2*exp(-a/b)*Ei(
1,-arcsech(c*x)-a/b))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{c^{2} x^{3} +{\left (c^{2} x^{3} - x\right )} \sqrt{c x + 1} \sqrt{-c x + 1} - x}{{\left (b^{2} c^{2} x^{2} - b^{2}\right )} x^{2} \log \left (x\right ) +{\left ({\left (b^{2} c^{2} \log \left (c\right ) - a b c^{2}\right )} x^{2} - b^{2} \log \left (c\right ) + a b\right )} x^{2} -{\left (b^{2} x^{2} \log \left (x\right ) +{\left (b^{2} \log \left (c\right ) - a b\right )} x^{2}\right )} \sqrt{c x + 1} \sqrt{-c x + 1} +{\left (\sqrt{c x + 1} \sqrt{-c x + 1} b^{2} x^{2} -{\left (b^{2} c^{2} x^{2} - b^{2}\right )} x^{2}\right )} \log \left (\sqrt{c x + 1} \sqrt{-c x + 1} + 1\right )} + \int -\frac{c^{4} x^{4} - 2 \, c^{2} x^{2} -{\left (c^{2} x^{2} + 1\right )}{\left (c x + 1\right )}{\left (c x - 1\right )} -{\left (c^{2} x^{2} - 2\right )} \sqrt{c x + 1} \sqrt{-c x + 1} + 1}{{\left (b^{2} c^{4} x^{4} - 2 \, b^{2} c^{2} x^{2} + b^{2}\right )} x^{2} \log \left (x\right ) -{\left (b^{2} x^{2} \log \left (x\right ) +{\left (b^{2} \log \left (c\right ) - a b\right )} x^{2}\right )}{\left (c x + 1\right )}{\left (c x - 1\right )} +{\left ({\left (b^{2} c^{4} \log \left (c\right ) - a b c^{4}\right )} x^{4} - 2 \,{\left (b^{2} c^{2} \log \left (c\right ) - a b c^{2}\right )} x^{2} + b^{2} \log \left (c\right ) - a b\right )} x^{2} - 2 \,{\left ({\left (b^{2} c^{2} x^{2} - b^{2}\right )} x^{2} \log \left (x\right ) +{\left ({\left (b^{2} c^{2} \log \left (c\right ) - a b c^{2}\right )} x^{2} - b^{2} \log \left (c\right ) + a b\right )} x^{2}\right )} \sqrt{c x + 1} \sqrt{-c x + 1} +{\left ({\left (c x + 1\right )}{\left (c x - 1\right )} b^{2} x^{2} + 2 \,{\left (b^{2} c^{2} x^{2} - b^{2}\right )} \sqrt{c x + 1} \sqrt{-c x + 1} x^{2} -{\left (b^{2} c^{4} x^{4} - 2 \, b^{2} c^{2} x^{2} + b^{2}\right )} x^{2}\right )} \log \left (\sqrt{c x + 1} \sqrt{-c x + 1} + 1\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arcsech(c*x))^2,x, algorithm="maxima")

[Out]

-(c^2*x^3 + (c^2*x^3 - x)*sqrt(c*x + 1)*sqrt(-c*x + 1) - x)/((b^2*c^2*x^2 - b^2)*x^2*log(x) + ((b^2*c^2*log(c)
 - a*b*c^2)*x^2 - b^2*log(c) + a*b)*x^2 - (b^2*x^2*log(x) + (b^2*log(c) - a*b)*x^2)*sqrt(c*x + 1)*sqrt(-c*x +
1) + (sqrt(c*x + 1)*sqrt(-c*x + 1)*b^2*x^2 - (b^2*c^2*x^2 - b^2)*x^2)*log(sqrt(c*x + 1)*sqrt(-c*x + 1) + 1)) +
 integrate(-(c^4*x^4 - 2*c^2*x^2 - (c^2*x^2 + 1)*(c*x + 1)*(c*x - 1) - (c^2*x^2 - 2)*sqrt(c*x + 1)*sqrt(-c*x +
 1) + 1)/((b^2*c^4*x^4 - 2*b^2*c^2*x^2 + b^2)*x^2*log(x) - (b^2*x^2*log(x) + (b^2*log(c) - a*b)*x^2)*(c*x + 1)
*(c*x - 1) + ((b^2*c^4*log(c) - a*b*c^4)*x^4 - 2*(b^2*c^2*log(c) - a*b*c^2)*x^2 + b^2*log(c) - a*b)*x^2 - 2*((
b^2*c^2*x^2 - b^2)*x^2*log(x) + ((b^2*c^2*log(c) - a*b*c^2)*x^2 - b^2*log(c) + a*b)*x^2)*sqrt(c*x + 1)*sqrt(-c
*x + 1) + ((c*x + 1)*(c*x - 1)*b^2*x^2 + 2*(b^2*c^2*x^2 - b^2)*sqrt(c*x + 1)*sqrt(-c*x + 1)*x^2 - (b^2*c^4*x^4
 - 2*b^2*c^2*x^2 + b^2)*x^2)*log(sqrt(c*x + 1)*sqrt(-c*x + 1) + 1)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{b^{2} x^{2} \operatorname{arsech}\left (c x\right )^{2} + 2 \, a b x^{2} \operatorname{arsech}\left (c x\right ) + a^{2} x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arcsech(c*x))^2,x, algorithm="fricas")

[Out]

integral(1/(b^2*x^2*arcsech(c*x)^2 + 2*a*b*x^2*arcsech(c*x) + a^2*x^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \left (a + b \operatorname{asech}{\left (c x \right )}\right )^{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/(a+b*asech(c*x))**2,x)

[Out]

Integral(1/(x**2*(a + b*asech(c*x))**2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b \operatorname{arsech}\left (c x\right ) + a\right )}^{2} x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/(a+b*arcsech(c*x))^2,x, algorithm="giac")

[Out]

integrate(1/((b*arcsech(c*x) + a)^2*x^2), x)